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Summary: In order to derive the relation between macroscopic thermodynamic quantities and the quantum

mechanical properties of atoms or atomic unions, statistical thermodynamics is usually applied. It is considered a

necessary means of solving problems of this type because ”phenomenological thermodynamics as a macroscopic

theory is on principle not able to make statements about atomic systems”. To correct this entrenched prejudice

that is even made relevant by standardized exams, is the aim of this presentation. Various important results of

quantum statistics will be derived for which, apart from the well-known relations of quantum mechanics, only the

chemical potential and its concentration and energy dependence are needed.

Introduction

The subject dealt with here is a small part of a more extensive project. The purpose of this project
is to make a thorough examination of all those areas of chemistry that can be categorized under
chemical dynamics (or more general matter dynamics) with the aim of finding and elaborating the
framework of concepts common to all parts of it. Figure 2 gives an overview of the field. If one
looks at the individual key words, one sees that almost all the branches of physical chemistry are
to be found.

Chemical dynamics has been developed from many sides simultaneously. It therefore has no
strictly unified framework like a mono-crystal, but it rather resembles a poly-crystal where differ-
ently ordered areas grow together in a more or less coincidental way at historically defined borders
(Figure 1). It is no wonder that there are strongly varying ways of describing similar phenom-
ena appearing in different areas. Compare, for instance, the terminology and equations used for
describing processes such as the exchange of chemical substances on adsorbing surfaces, exchange
of protons in acid-base reactions, exchange of electrons between redox systems and exchange of
photons in spectroscopy. Common characteristics are hardly to be found here and trying to find
them feels contrived.

Figure 1: Structures that grow together

from different sides are seldom completely

ordered. Drawing from a photograph of un-

known provenance.
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Figure 2: The areas of chemistry that can be categorized under ’chemical dynamics’. The chemical potential µ comprises

the central pivot in all of chemical dynamics, where the lever is best applied for solving the problems involved1. This also

holds for the molecular statistics investigated here, in which partition functions would otherwise play the key role.

It is obvious that an unnecessary and uncoordinated juxtaposition of various terms is not
economical. The transition from one area to another is complicated because one must rethink an
old order into a new one.

One tends to accept this condition as natural and therefore, unavoidable. The fact is, though,
that the terminology and formulas we use for our descriptions are constructions containing many
random elements making it easy to give the appearance of differences when they don’t actually
appear in nature (Figure 3). A good example of this is ”molecular statistics” whose application,
if compared to phenomenological thermodynamics, requires a new and specific repertoire of termi-
nology. The problems dealt with can just as easily be solved with previously known methods, as
will be demonstrated in the following.

First acquaintance with molecular statistics

A physicist or chemist first encounters molecular statistics in a classic variation, in the kinetic
theory of gases. Maxwell’s law of velocity distribution, Boltzmann’s law, and the equipartition
principle of energy are some results of the classical mechanical theory. These are considered to be
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Figure 3: How easily contradicting pictures can be created despite identical basic structures can be seen in the figure.

On the left is the predetermined dot pattern. The assignment was to mark the positions of the intersections and breaks

of the dots in the most simple and memorable way by use of lines. A selection of the results by various people is pictured

on the right. The order of the dots is exactly the same both on the right and on the left. The meandering pattern was

basic to the drawing of the points. However, even this pattern is not clearly defined so that differing areas of meandering

can be created which have a disordered structure at the edges.

both important enough and simple enough to be presented to students during their first semesters.
A statistical derivation is avoided due to its complexity. The barometric formula is often used to
give at least some justification for the existence of the Boltzmann-Factor e−ε/kT .

As the most frequent application of the equipartition principle, the internal energy of an ideal
gas and its heat capacity – which is derived on the basis of the temperature dependence of the
internal energy – are discussed. While the contribution of the translational movement of the
gas molecules is totally regular, and the contribution of rotation can be comprehended through
comparably simple rules, it is difficult to describe vibrations. When they are totally ”frozen”
at low enough temperatures and therefore make no contribution, the conditions are still simple
even when incomprehensible from the standpoint of classical theory. The area of somewhat higher
temperatures, where vibrations gradually ”thaw”, is the actual domain of quantum statistics, in
which quantum theoretical results can be combined with statistical methods. Only when the
vibrations are fully stimulated can the equipartition principle be used for calculating the kinetic and
potential vibrational energy. It will fail again when even higher temperatures make the vibration
anharmonic.

Prerequisite Formulas

It is especially easy here to fall back on phenomenological thermodynamics as an alternative to
statistics. In fact – as usual for solving almost all problems of chemical dynamics1 – we need only
the existence and some properties of the chemical potential from the extensive thermodynamic

1G. Job: ”Teaching Thermodynamics: Chemical Potential From the Beginning”, lecture at the conference for thermo-

dynamics in Taormina (Sicily) on 20.2.91. Taking into account the numerous special constructs in thermodynamics only

increases the length of calculations. Among these constructs are – in addition to the usual energy term E – quantities

such as internal energy U , enthalpy H, free energy F , free enthalpy G, or, along with the chemical potentials µ, the

activities λ, fugacities f , ionic exponents pH, pOH ... and all the other quantities derived from them. In order to preserve

the relationship to previous representations, it will be necessary to deal with these concepts and not to ignore them.
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calculus. We will use the formula for its concentration dependence especially often. Because in the
following we will limit ourselves to dilute gases and solutions, the following equation is sufficient:

µ = µ0 + RT ln
c

c0
. (mass action formula)

This formula describes the phenomenon chemists call mass action as a characteristic of the chemical
potential of a substance. For this reason we shall call it the mass action formula. Due to the
proportionality of pressure and concentration in dilute gases of the same temperature, p ∼ c, we
can replace the ratio c/c0 by the pressure ratio p/p0 when necessary. Similarly, this holds for other
concentration measures – molality b, mass fraction w, mole fraction x, etc. – so that we have
slightly differing ways of playing with the mass action formula. The value µ0 at the reference value
of the chosen concentration measures, i.e., c0, p0, b0 etc., we call the reference value of the potential
(in an extended sense2) or briefly the reference potential.

Another equation is often used. When the molecules of a substance are put into an excited
state which is higher in energy by ε, without otherwise altering them or their surround (type of
solvent, temperature, pressure, concentrations, field strengths etc.), the chemical potential of the
substance increases by the molar energy ε/τ :

µ(ε) = µ(0) + ε/τ . (excitation formula)

(τ indicates the elementary amount of substance3,4). The simplest form of such a ’purely energetic’
excitation that leaves the molecules themselves unchanged would be to displace them in an external
field to a position having a higher potential energy, by a value of ε. By choosing an appropriate
point of departure, one can, for example, set ε = mgh in the gravitational field and ε = zeϕ in the
electric field. µ(ε) = µ(0) + Mgh is also designated as the gravi-chemical potential and µ(ε) =
µ(0) + zFϕ as the electro-chemical potential, while µ(0) represents the intrinsic chemical potential
(m mass of a molecule, M = m/τ molar mass, g gravitational field strenght, h height, z charge
number, e elementary charge, F = e/τ Faraday-constant, ϕ electric potential).

The internal excitation of molecules requires a bit more attention. In general, the initial state
of the molecules is not equivalent to any one ”quantum state” with a certain energy ε0, but rather
comprises a collective of such states with the energies, ε0, ε1, ε2 ... . Only when an excitation
leads to an equal shift of all energy values to ε, ε0 + ε, ε1 + ε, ε2 + ε ... , without changing the
number of states, can µ be calculated as given. In the usual approaches, this condition is adhered
to unconsciously, needing little thought.

2In practice it is advisable to limit our use of the expression reference value (in the narrow sense) to the most common

case, namely that the reference values c0, p0, b0 ... of the chosen concentration measures c, p, b ... correspond to the

norm values c◦ = 1 kmol m−3, p◦ = 101 kPa, b◦ = 1 mol kg−1 ... . These reference values – often called standard

values – are indicated by a special symbol such as µ◦.
3In his ”Konzepte eines zeitgemäßen Physikunterrichts”, Book 2, Schroedel: Hannover 1978, pg. 9, G. Falk suggests

that τ is the reciprocal of the Avogadro constant τ = N−1
A = 1.6606 ·10−23 mol. It marks the elementary amount of a

substance, meaning exactly the amount that is usually called a particle. This not absolutely necessary and initially strange

departure from the usual way of writing gives us more uniform formulas and ways of expression. Particle number N and

charge number z or elementary amount of substance τ and elementary charge e become corresponding quantities. The

amount of substance n as well as the electric charge q are quantized by integers, where τ and e represent the elementary

quanta of these quantities: n = N · τ , q = z · e.
4In physics the product µτ is often called chemical potential and abbreviated with the symbol µ. It then happens that

the particle number Ni appears in the formulas instead of the amount of substance ni.

4



It should be remembered that the first derivative of chemical potential with respect to temper-
ature T at constant values of pressure p and amount of substance n, yields the molar entropy Sm,
whereas the second derivative yields the molar heat capacity Cp,m:

Sm = −
(

∂µ

∂T

)

p,n

and Cp,m = −T

(
∂2µ

∂T 2

)

p,n

.

If we proceed from chemical potentials to entropies or heat capacities, we already start upon the
wrong path, making the descriptions more complicated (except in the case of the effects of heat),
the formulas more complex, the proofs more obscure. For these reasons, it is advisable to avoid
taking this step if possible. We will take it here on occasion, but only to make better comparisons
with previous results.

We will, at first, accept the conclusions of quantum theory without question, even though we
would only need strongly simplified relations for a number of applications in this field. Some of
the derivations below could be further streamlined using this approach.

Contribution of vibrations to the chemical potential

As the simplest example, we consider a bi-atomic gas B, perhaps iodine vapor. We take all the
gas particles that are in the same vibrational state with the vibrational quantum number v to
be molecules of a substance B(v), and the entire gas to be a mixture of these substances5. The
differences of energy in the individual vibrational states are taken into account by assuming ε(v)
= v · hν, where we consider the vibrations as approximately harmonic and independent of other
kinds of movement of the molecule6. As long as this approximation is valid, the excitation formula
yields for the chemical potential of the individual substance B(v)

µ0(v) = µ0(0) + v · hν

τ
for v = 0, 1, 2, 3... .

Since the transformation of potentials into one another must happen under the same conditions,
and especially at identical concentrations, the formula contains the reference values. Changes in
vibration in the particles through collisions with each other and with the wall, appear as transfor-
mations of the following type:

B(v) −→ B(v′) .

After a short while, all of these processes reach a state of equilibrium where the concentrations of
the components B(v) reach their equilibrium values c(v). In this state, the potential µ is the same
for all substances B(v). This means that when we take both the mass action and the excitation
formula into account, we obtain

µ = µ0(0) + v · hν

τ
+ RT ln

c(v)
c0

and v = 0, 1, 2, 3... .

5This device was first used by Albert Einstein (Verh. Dtsch. Phys. Ges. 12 (1914) 820) with the expressed note

that so used, recourse to Boltzmann’s principle, and therewith, statistical considerations, become unnecessary.

6We therefore assume that the transition from a vibrational state into another, has no influence upon other quantum

states of the molecule (translation, rotation, etc.). This is certainly not justified at higher states of rotation because the

increase of moment of inertia through an enlarged vibration amplitude and therewith, reaction upon rotational movement,

becomes noticeable. This error is unimportant at lower temperatures because the portion of more strongly stimulated

particles is very small in the equilibrium mixture.
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Figure 4: The contribution of molecular vibration

to the heat capacity of I2-vapor, is Cs(T ) . The

characteristic temperature of vibration Θs is 305 K.

The c(v)’s are easily calculated from this. By subtracting µ0 + v · hν/τ from both sides, dividing
by RT , taking into account the power rules ea+b = ea · eb and eln a = a, multiplying by c0, and
remembering that R = k/τ , we obtain

c0 · exp
(

µ− µ0(0)
RT

)

︸ ︷︷ ︸
c(0)

·
(
e−hν/kT

)v

︸ ︷︷ ︸
q < 1

= c(v) .

That the expression on the left is equal to c(0) can be seen when one sets v = 0. Adding up all
the concentrations c(v) gives the total concentration c of the gas B:

c =
∞∑

v=0

c(v) = c(0)
∞∑

v=0

qv = c(0)
1

1− q
= c0 exp

(
µ− µ0(0)

RT

)
1

1− e−hν/kT︸ ︷︷ ︸
zs

.

The fraction on the far right is the well-known quantum statistical expression for the vibrational
partition function zs of the harmonic oscillator. Solving for µ results in

µ = µ0(0) + RT ln
(
1− e−hν/kT

)
+

︸ ︷︷ ︸
µs(T )

RT ln
c

c0

The term µs(T ) is the sought after contribution of molecular vibrations to the chemical potential.
By taking the second derivative with respect to T and multiplying by −T , we can calculate the
contribution of vibrations to the molar heat capacity, Cs = −T (d2µs/dT 2). The result, which is
represented in Figure 4, is:

Cs = R · (hν/kT )2 · ehν/kT

[ehν/kT − 1]2

(intermediate steps have been omitted here).

Contribution of rotation to the chemical potential

Calculations for rotational contributions follow the same pattern. This exercise is actually only
interesting in the case of hydrogen, where the rotations, like the vibrations, begin to ”freeze” at a
comparably high temperature. In the following we will limit ourselves to para-hydrogen. Quantum
mechanically we obtain for the energy of the hydrogen molecule ε(J,mJ) = k Θr · J(J + 1), which
holds for the rotational state characterized by the rotational quantum number J and the magnetic
quantum number mJ . Θr is the rotational temperature which can be calculated from the molecular
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geometry. Again, we take the total of all the molecules in the same state of rotation as one
substance B(J,mJ). According to the excitation formula, the reference value of the potential is:

µ0(J,mJ) = µ0(0, 0) + R Θr J (J + 1) ,





J = 0, 2, 4, 6, 8... ,

mJ = −J,−J + 1, ..., J − 1, J .

Of course, we could have combined all the molecules belonging to one rotational level into a
substance B(J), i.e., the molecules which have rotational states with the same J , but not necessarily
the same mJ , and therefore differ from each other not by their energy, but by their orientation
in space. However, since the number of quantum states differing by mJ is 2J + 1 and therefore
changes from one rotational level to another, the requirements for applying the excitation formula
were not fulfilled.

In colliding with each other, differing kinds of molecules change into one another so that the
concentrations c(J,mJ) alter until – at the same value of the chemical potential – equilibrium
is reached for all components B(J,mJ) of the mixture. Because of the mass action formula, the
following equation holds in this case for all J and mJ :

µ = µ0(0, 0) + R Θr J (J + 1) + RT ln
c(J,mJ)

c0

from which, as seen in the last section, one can calculate the concentrations of all substances

c0 · exp
(

µ− µ0(0, 0)
RT

)
·
(
e−ΘrJ(J+1)/T

)
= c(J,mJ) .

Adding up over all J and mJ – the latter results in 2J + 1 equal elements and therewith, a factor
2J + 1 – yields for the total concentration c of gas B

c = c0 · exp
(

µ− µ0(0, 0)
RT

) ∑

J

(2J + 1) e−ΘrJ(J+1)/T

︸ ︷︷ ︸
zr

zr is equivalent to the rotational partition function of quantum statistics. If the equation is solved
for µ and the sum is written out, one obtains for µ the expression

µ = µ0(0, 0) − RT ln(1 + 5e−6Θr/T + 9e−20Θr/T + ...) +︸ ︷︷ ︸
µr(T )

RT ln
c

c0

where µr(T ) represents the desired rotational contribution in the form of a series. Because the
series quickly converges at medium and low temperatures, the three elements given are sufficient
at around 0 ... 300 K, if the margin of error should be smaller than 0.001 kG.

Again, for a better comparison with conventional representations, one can calculate the rota-
tional contribution to the molar heat capacity Cr, by taking the second derivative of µr(T ) with
respect to T . By omitting the intermediate calculation, one obtains the formula below which is
complicated in comparison to the expression for µr(T ). The result is represented grafically in
Figure 5.

Cr(T ) = R

(
Θr

T

)2
{

180 e−6Θr/T + 3600 e−20Θr/T

1 + 5 e−6Θr/T + 9 e−20Θr/T
−

[
30 e−6Θr/T + 180 e−20Θr/T

1 + 5 e−6Θr/T + 9 e−20Θr/T

]2
}

.
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Figure 5: The contribution Cr(T ) of molecular

rotation to the molar heat capacity of para hydrogen.

The rotational characteristic temperature Θr is 87.7

K. For calculations up to 300 K, the formula found

in the text is used. Only the three lowest levels

of rotation (J = 0, 2, 4) are taken into account.

Above 300 K, the fourth level (J = 6) is added.

Molecular velocity distribution

In order to derive the distribution of particle velocities in a gas, we will use the same device as
before. We conceive of all the particles with the same velocity vector vvv as molecules of a substance
B(vvv), and of the entire gas as a mixture of many such substances. At this point, we run into a
difficulty. The number of particles that have exactly the velocity vvv is, strictly speaking, zero. For
this reason we consider the velocity space to be divided into a lattice of cubes having edges of
length ∆v, where ∆v should be small in comparison to the width of the velocity distribution. All
the particles whose velocity vectors end within such a cube will be considered as molecules of the
same substance B(vvv).

Because particles moving in various directions cannot be distinguished from each other on
chemical grounds, we assign them the same reference potential µ0. Differing values of energy at
different absolute values of velocity, v = |vvv|, are taken into account by the term ε/τ = 1

2mv2/τ =
1
2Mv2, the molar kinetic energy of the substance:

µ(vvv) = µ0(0) +
1
2
Mv2 .

In the simplest case of a gas with particles without structure in a volume V , this approach can
be justified as follows. All the particles of the substance B(vvv) lie in a cell of the molecular phase
space that has a phase volume of (m∆v)3V and therefore comprises ζ = (m∆v)3V/h3 quantum
states. In the case of small enough ∆v, they all belong to the same energy level 1

2Mv2 (h: Planck

constant). Because ζ is the same in all cases, the substance B(vvv) fulfills the requirements of the
excitation formula in regards to number and energy of the molecular quantum state.

Change of velocity of the particles through frequent collisions with each other appears as trans-
formations of a simple type B(vvv) → B(vvv′). If we do not disturb the gas by having it stirred, or
through other kinds of interference, then all these processes reach a state of equilibrium within a
short time. The chemical potential µ will be the same for all substances B(vvv), so that according
to the mass action formula we have

µ = µ0 +
1
2
Mv2 + RT ln

c(vvv)
c0

for all vvv

where c(vvv) are the equilibrium values of the concentrations. By solving for c(vvv), we obtain the
desired distribution (compare to Figure 6):

c(vvv) = c0 · exp
(

µ− µ0(0)
RT

)

︸ ︷︷ ︸
c(0)

· exp
(− 1

2Mv2

RT

)
⇒ c(vvv) = c(0) exp

(
−m(v2

x + v2
y + v2

z)
2kT

)
.
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Figure 6: If we represent c(vvv) according to the

equation above as shading in three dimensional

velocity space, we obtain the spherical cloud given

at the left. The values are valid for nitrogen at 298 K.

Barometric formula

The distribution of a gas in a homogenous gravitational field can be extracted using the same
pattern as above. To do this, we consider the particles at a particular altitude h as molecules of a
substance B(h)7. The reference potentials µ0(h) of the chemically identical substances B(h) differ
only by the molar potential energy ε/τ = Mgh:

µ0(h) = µ0(0) + Mgh .

The exchange of particles between different altitudes is equivalent to the reactions B(h) → B(h′).
If the temperature is homogenous, equilibrium of all the substances is eventually reached. The
requirement for equilibrium is

µ = µ0 + Mgh + RT ln
c(h)
c0

with the potential µ being independent of h. Solving for c(h) yields the equation

c(h) = c0 · exp
(

µ− µ0(0)
RT

)

︸ ︷︷ ︸
c(0)

· exp
(

Mgh

RT

)
⇒ c(h) = c(0) · exp

(−mgh

kT

)
.

Equilibrium of sedimentation in a centrifuge

The centrifugal force upon a particle with a mass m at a distance r from the axis of rotation of a
centrifuge spinning with the angular velocity ω, is F = mω2r. It follows that the potential energy
relative to a point at a distance r0, is

ε =
∫ r

r0

Fdr = −1
2
mω2(r − r0)2 .

Along with the contribution ε/τ to the chemical potential, we have to take into account the pressure
dependence of the potential due to the high pressures in the solution being centrifuged. A linear

7Strictly speaking, in this type of procedure one should consider a layer of finite thickness ∆h so that the particle

number doesn’t vanish. In contrast to the last section where c(vvv) goes to zero for ∆v → 0 (proportional to (∆v)3), c(h)

is independent of ∆h for ∆h → 0 and stays finite so that the equations used above remain valid for ∆h = 0 as well.
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approach is sufficient here:
µ(p) = µ(p0) + Vm · (p− p0)

since the molar volume Vm of the condensed substance is only slightly dependent upon the pressure
p. We will now look at a centrifuged dilute solution of a substance B in a liquid A (Figure 7 on the
left). As a point of reference, we choose the fluid’s surface at a distance r0 from the axis of rotation.
If we neglect the tiny reduction of µA by the solved substance B, we have for the potentials µA

and µB of the substances A and B at a location inside the solution (r > r0):

µA(r) = µA(r0)− 1
2

MA ω2 (r2 − r2
0) + VA · [p(r)− p(r0)] ,

µB(r) = µB(r0)− 1
2

MB ω2 (r2 − r2
0) + VB · [p(r)− p(r0)] + RT ln

c(r)
c(r0)

.

Equilibrium is reached when the potentials have evened out everywhere so that µA(r) as well as
µB(r) have the same value everywhere. In this state, the terms µ(r) and µ(r0) in both equations
cancel so that we obtain the following quadratic relation for the pressure distribution in the solution
from the first one

p(r) = p(r0) +
1
2

ρA ω2 (r2 − r2
0)

Here, ρA = MA/VA is the density of the fluid A. When this result is inserted into the second
equation above, the desired concentration distribution is obtained:

[MB − ρAVB ] · 1
2

ω2 (r2 − r2
0) = RT ln

c(r)
c(r0)

⇒

c(r) = c(r0) · exp
(

[mB − ρAvB ] · ω2 · (r2 − r2
0)

2kT

)
.

vB = VB · τ specifies the volume and ρA · vB the mass of fluid displaced by a B particle. In other
words, ρA · vB is the apparent loss of mass of a B-particle as a result of buoyancy in the fluid. An
interesting point is that this hydro-mechanical correction is a result of the pressure dependence of
the chemical potentials. The fact that VB and vB can become negative due to denser packing of
A-molecules in the solvation sheath does not negate the principle of Archimedes at all.

Not much is changed if B is not dissolved but only suspended. One can consider particles of the
same diameter ∅ as molecules of a solved substance B(∅), and the entire suspension as a mixture
of such substances. For each substance B(∅) the equation derived above again holds.

Probability of an energy state

As the examples which we have observed have shown, the mass action and the excitation formulas,
µ(c) = µ0 + RT ln(c/c0) and µ(ε) = µ0 + ε/τ , together serve the same purpose as Boltzmann’s
principle. Taken together, they appear to be only a special representation of this principle; they are
closer to chemistry and well known in this guise, but badly applied. We obtain the conventional
version if we interpret the concentration c(ε, i) of the particle type B(ε, i) as a measure of the
probability p(ε, i) to find a particle B in a state with energy ε and parameter value i: p(ε, i)
∼ c(ε, i). The parameter i, that we take to be discrete, stands for some characteristic (spatial
orientation, spin orientation, conformation, etc.) by which – apart from ε – the individual types of
particle ensembles can be distinguished if applicable. One needs only to insert the second equation

10
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Figure 7: Sedimentation equilibrium in a centrifuge for a substance B (particle mass mB , particle volume vB) which

is either dissolved or suspended in a fluid with a density of ρA. If the centrifugal force becomes larger than the force of

buoyancy, the substance B concentrates toward the outside (upper container, upper curve), otherwise toward the inside

(lower container, lower curve).

ω angular velocity, r distance from the axis of rotation, r0 distance of the fluid surface from the axis of rotation, c

concentration of B, c(0) the value of c extrapolated to the axis of rotation; the curve parameter σ is the distance from

the axis in which the potential energy corrected by the effect of buoyancy is |mB − ρAvB | · 1
2
ω2σ2 = 1

2
kT .

into the first one and solve for c = c(ε, i):

c(ε, i) = c0 · exp
(

µ− µ0(0)
RT

)
· e−ε/kT ⇒ p(ε, i) ∼ e−ε/kT .

Statistical weights do not come up here because application of the excitation formula requires
that the individual types of particles are chosen to be equally weighted statistically. The stipulation
that the corresponding ”quantum states” of differing types of particles may differ by the same
energy value ε, but not in their number, means exactly this. If the usual question arises about
the probability p(ε) of finding a B-particle at the energy level ε, i.e., in a state with energy ε

independent of i, one needs only to add up the appropriate p(ε, i). Since all of these are equal, and
if their number is g(ε) (where g(ε) is the statistical weight of the energy level), we obtain

p(ε) ∼ g(ε) · e−ε/kT . (Boltzmann’s principle)

Outlook

Nothing speaks against relying upon Boltzmann’s principle in the usual way for further consid-
erations. We will, however, stay with the ”chemically more adjusted” description using chemical
potentials because similarities between the different fields, which usually stay hidden due to dif-
fering patterns of description, will become apparent. In order to demonstrate the significance of
the approach, additional molecular statistical examples from strongly differing fields of chemical
dynamics, will be considered.

The equivalence to Boltzmann’s principle, stressed in the last section, lets us suspect that
our approach must fail at one point. Boltzmann based his derivation upon the assumption
of individually distinguishable particles, which is unjustified from the view of quantum theory.
Conventional teaching says that all particles are either fermions and bosons. These only obey the
”Boltzmann statistics” when sufficiently diluted. Otherwise, they are subject to special ”quantum
statistics” as a result of the Pauli principle and the indistinguishability of particles in the same
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quantum state. For fermions, this is ”Fermi-Dirac statistics” and for bosons, ”Bose-Einstein

statistics”. A calculation of the absolute entropy can only be successful upon this basis whereby
indistinguishability of like particles also has consequences for highly diluted systems. The number
of possible micro-states of a system of N independent equal particles thus changes by a factor 1/N !
and the entropy by ∆S = −k ln N !.

We will see that our approach also works with problems of this sort. At this juncture, it is useful
to fall back upon surface chemistry because it gives us clear examples of systems with Fermi-Dirac

and Bose-Einstein distributions. We won’t have to waste any words on indistinguishability of
particles. We obtain the correct entropy values without even mentioning the factor 1/N !.
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Georg Job
An elementary approach to quantum statistical problems (II)

After a talk given at the Seminar of Surface Chemistry in the Institute of Physical Chemistry

of the University of Hamburg, on May 21, 1991.

Summary: The first subject treated here – namely mono- and multiple-layer adsorption – furnishes a vivid model

of the population of single particle quantum states with fermions and bosons. Based on this, an approach to

the elementary solution of quantum statistical problems of this kind can be derived as well. The equations

describing the translational contributions to chemical potential, entropy, energy and specific heat of a dilute gas

are important subsidiary results. Again, as in Part I, we essentially need only the chemical potential and its

dependence upon concentration and energy to treat adsorption as well as systems of fermions and bosons. The

central aspect of this paper is the problem of the transition from macroscopic to microscopic systems.

Introduction

In many branches of physics and in chemistry especially, we have become used to a constant
interplay of macroscopic and microscopic, inter- and intramolecular, viewpoints. In his work, a
chemist mentally grasps the processes on the basis of atomistic images. Then he derives rules for
his pratical actions from these images (Figure 1). The goal is to combine all the different aspects
into a unified image with whose help the transition between various levels can be achieved without
stumbling. Sometimes the goal is achieved. The formula H2O denotes both an unstructured
substance, as well as a particle having a certain shape. It describes both an assembly of molecules,
as well as a specific union of three atoms. The viewpoint depends upon the setting in which the
formula appears, or into which it has been placed mentally. In dynamics, however, the goal is rarely
achieved. For phenomena of the macroscopic world, we make use of thermodynamics. Molecular
statistics is applied for interactions between molecules, and quantum mechanics describes intra-
molecular forces. These theories are so different that the transition from one level to another is
very cumbersome. Scientists therefore are content often with qualitative rules that allow some
orientation. The derivation and application of quantitative relations is left to specialists.

Figure 1: In his work in the lab, a chemist is

guided by atomistic models. The success of his

work depends largely upon the coherence of his

molecular models. A misguided relation between

micro-world and macro-world can also lead to

failure. In the figure we see a suggestion for

an experiment for the Wurtz synthesis of knot-

ted cycloalkanes by dropwise addition of a di-

luted solution of long-chain ω-ω′-diiodalkanes in

a suspension of sodium in xylene. To achieve

the formation of knots, at least 50 CH2 units

are needed, as can be shown with the help of

calotte models. Knot free cycling and inter-

molecular polymerization are important compet-

ing reactions. The latter can be suppressed by

sufficient dilution.



On the other hand, there are transitions in the dynamics between these various levels of de-
scription that hint at more commonality than is seen in the typical formulas. As an example,
let us consider the following sequence of simple processes that can be described with the help of
equivalent reaction formulas. We start with an operation from the lab, and end with a quantum
mechanical process in an atom:

Bs + H+ → BsH+ , protonation of a base during titration,
B + E → EB , formation of an enzyme-substrate complex in a cell,

+ B → B , adsorption of a molecule at a surface site,
+ e → e , occupation of an atomic orbital with electrons.

The first two processes are commonly described phenomenologically. For the third we use
molecular kinetics, for the fourth quantum statistics. All four processes have this in common: a
certain type of particle populates a certain type of location. The transition from the first to the last
entry in the list is apparently fluid, since we can easily add intermediate entries. The gap between
the first (homogenous) reaction and the third (heterogeneous) is spanned by the second. This
reaction can be viewed as either a bimolecular reaction between solved substances E (enzyme) and
B (substrate) or as adsorption of B to E. We can get to a contiguous surface in steps by thinking
of the E-molecules as being combined into increasingly larger surface-like complexes. In a similar
way we can construct elements that mediate between the third and fourth of the processes.

From this viewpoint we cannot see what would hinder us to describe all processes on the basis
of the pattern already used in Part I. For instance, we could use chemical potentials to compute
the occupation of atomic or molecular orbitals by electrons. On further thought, however, we find
reasons that can dampen our expectations somewhat:

• The fact that these processes are dealt with so differently, speaks out against our expectation.
It appears absurd to assume that this would happen arbitrarily in such a well thought out
subject.

• We know from statistics that many-body systems have properties that are missing from
smaller assemblies of the same particles. This makes an equal treatment of an extended
aggregate and of molecular or atomic micro-systems an apparent impossibility.

• The occupancy of an atomic orbital with electrons is determined primarily by the Pauli

principle. This adds an intrinsically new, quantum-mechanical aspect which does not play a
role in the other three cases.

• In quantum statistics, the indistinguishability of equal particles has important consequences
for the distribution functions. This aspect does not have to be taken into consideration in
normal chemical processes.

To what extent these are good reasons we cannot decide on the spot. We know from the exam-
ples of Part I that differing patterns of description often are the expression of differing historical
developments, and that prejudices often prevent obvious solutions. Let us disregard the arguments
and try to extend the phenomenological description of the first process step by step to the other
three. We shall make use of the same few tools that were already applied in Part I. We essentially
assume the existence of the chemical potential and fall back on its dependence upon concentration
and energy (mass action formula µ = µ0 + RTln(c/c0) and excitation formula µ(ε) = µ(0) + ε/τ).
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Protonation of a base

This section serves to recall the type of description used in chemistry in case of our first example. In
the theory of acids and bases, the pH-value (the proton exponent) replaces the chemical potential
µH+ of the hydrogen ions1. The degree of protonation Θ = cBsH+/(cBs + cBsH+) of a base Bs
depends upon the pH-value or the proton potential µH+ of the solution. Starting with the condition
of equilibrium, µBs + µH+ = µBsH+ , the mass action formula leads to

µ0,Bs + RT ln(cBs/c0) + µH+ = µ0,BsH+ + RT ln(cBsH+/c0) .

Solving for µH+ and using the notation µ1 = µ0,BsH+ − µ0,Bs yields a relation that is equivalent
to a Henderson-Hasselbalch equation where µ1 replaces the acidity exponent pKA (see Figure
2a):

µH+ = µ1 + RT ln
cBsH+

cBs
= µ1 + RT ln

Θ
1−Θ

.

µ1 graphically describes the 50%-potential, i.e., the proton potential at a degree of protonation Θ
= 1

2 . The index 1 for the attachment of the first proton to the base Bs has been chosen in view of
a possible multiple addition of protons. Solving the previous relation for Θ, and making use of a =
exp[(µH+−µ1)/(RT )] as an abbreviation, and a = Θ/(1−Θ) and Θ = 1/(a−1 +1) as intermediate
steps, leads to the following equation:

Θ =
1

exp
(

µ1−µH+

RT

)
+ 1

(protonation equation)

We shall encounter this equation repeatedly in similar form. Figure 2b shows the relation graphi-
cally. We obtain corresponding equations and graphs if we investigate the analogous redox reaction
Ox + e− → Rd− instead of the acid-base reaction Bs + H+ → BsH+.

The chemical potential of free and occupied sites

The simplest case where we encounter the question of the chemical potential of sites, rather than of
substances, is the adsorption of a substance B from a gas or a solution to independent adsorption
sites:

+ B → B .

Since the adsorption equilibrium is codetermined by the availability of free and occupied locations,
and B , it is obvious that they might be assigned chemical potentials, µ( ) and µ( B ), as

well. A comparison with the corresponding homogenous reaction discussed in the introduction,

A + B → AB ,

1These quantities hardly differ more than Fahrenheit ϑF and Kelvin T temperatures, as demonstrated by their con-

version:

µH+ = µ0,H+ + f · pH, where f = −RT ln(10), and µ0,H+ ≡ 0 ;

T = T0,F + f ′ · ϑF, where f ′ = 5K/9F, T0,F = 255.37K .

The zero point of the chemical potential may be chosen arbitrarily for all temperatures (as long as all partners in the

reaction have the same temperature) for a single type of charged particle (electron or ion) without influencing the values

of the potential differences which alone are responsible for chemical processes. In the chemistry of aqueous solutions, the

standard reference value of the proton potential µ◦
H+ lends itself for such fixing of the scale.
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Figure 2: Titration curve of the base hydrogenphosphate, HPO2−
4 .

a) conventional: pH-value as a function of used volume V of acid (V > 0) or of lye (V < 0); solid curve: computed

according to the Henderson-Hasselbach equation, pH = pKA + lg(cBs/cBsH+ ); dashed part on the left: result

of deprotonation of HPO2−
4 forming PO3−

4 (and, partially, of H2O forming OH−); dashed part on the right: result of

protonation of HPO2−
4 forming H2PO−4 (and, partially, of H2O forming H3O+); pKi: i-th acidity exponent of phosphoric

acid.

b) (corresponds to Graph a rotated by 90◦ counterclockwise): degree of protonation Θ as a function of proton potential

µH+ ; solid line: calculated course based upon the protonation equation; dashed part: actual course. µ−i: 50%-potential

for the i-th level of deprotonation of phosphoric acid.

leads to a plausible suggestion. We can look at a particle A as the carrier of a single adsorption
location for B. So that the sites do not interact, the total concentration c = c(A) + c(AB) of
free and bound A must remain low. On the other hand, this condition allows us to make use of the
mass action formula for µ(A) and µ(AB). The condition for equilibrium µ(A) + µ(B) = µ(AB)
then takes the form

µ0(A) + RT ln[c(A)/c0] + µ(B) = µ0(AB) + RT ln[c(AB)/c0] .

We slightly change the requirement for equilibrium in order to achieve a description that is
independent of whether or not the sites sit upon separate particles or upon a continuous surface
and also independent of the components of the carrier A unimportant for adsorption. c(A)/c

= Θ( ) is the fraction of empty sites and c(AB)/c = Θ( B ) the fraction of occupied sites. We
replace c(A) and c(AB) with c Θ( ) and c Θ( B ), respectively, and subtract µ0(A) + RT ln(c/c0)
from both sides:

µ0( ) + RT lnΘ( )
︸ ︷︷ ︸

+ µ(B) = µ0( B ) + RT lnΘ( B )
︸ ︷︷ ︸

µ( ) + µ(B) = µ( B ) (equilibrium condition)

We understand µ0( B ) ≡ µ0(AB) − µ0(A) to be the reference value of the chemical potential of
the occupied sites, meaning as the potential µ( B ) at full occupation Θ( B ) = 1. The term µ0( )
≡ 0 is only inserted for the sake of unity. It takes the role of the reference value of the chemical
potential of empty sites , meaning as the potential µ( ) for Θ( ) = 1.

A chemical bond between A and B changes both A and B. In larger molecules, the changes
affect mostly the atoms near the bonding site while atoms further away are mostly unaffected. Our
definition above of the quantity µ0( B ), results in all the changes of the molecules A and B being
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formally assigned to the adsorbed particle B. In contrast, the contribution of the unchanged parts
of the carrier A cancels, especially that of all the atoms of A that do not lie in the bonding site’s
area of influence.

The mass action formulas derived above, µ( ) = µ0( ) + RT lnΘ( ) and µ( B ) = µ0( B )
+ RT lnΘ( B ), (for sites independent of each other whether or not they are occupied) can be
applied widely. We will deal with this in more detail in the following.

Single-layer adsorption

In our first example, we consider the case discussed in the last section. More precisely, we will look
at the adsorption of a substance B out of a dilute solution or dilute gas on a solid surface with
identical and independent adsorption sites. Taking into account the mass action formula for B,
and B , as well as the equations Θ( B ) = Θ and Θ( ) = 1 − Θ with the degree of coverage Θ,
the condition for equilibrium of adsorption is:

µ0( ) + RT ln(1−Θ) + µ0(B) + RT ln(c/c0) = µ0( B ) + RT lnΘ .

We subtract µ0(B) from both sides, divide by RT , raise to the power of e and multiply by c0.
Because of µ0( ) = 0, this leads to the relation

c(1−Θ) = c0 · exp

(
µ0( B )− µ0(B)

RT

)

︸ ︷︷ ︸
c1 50%-concentration

·Θ .

Dividing both sides by c Θ and addition of 1 yields 1/Θ = 1 + c1/c. Going over to the reciprocal
and expanding the right hand side by c/c1 results in the well-known equation for Langmuir’s
adsorption isotherm, in which the parameter c1 represents the 50%-concentration, meaning the
concentration c for which Θ = 1

2 :

Θ =
c/c1

1 + c/c1
=

1
1 + c1/c

(Langmuir’s adsorption equation)

Multi-layer adsorption

If one works at temperatures and pressures near the dew point of a gas B|g that is to be adsorbed,
then further gas particles are deposited on the first layer of B molecules on the surface so that the
degree of coverage Θ can be greater than 1:

+ i B|g → i B i = 1, 2, 3...

While the undermost layer of the adsorbed B-film is generally bound more strongly to the adsorbing
surface, the other layers adhere to each other as if in a fluid. We take this fact into account by
assuming that

µ( i B ) = µ( B ) + (i− 1) · µ(B|l) .

The chemical potential of B in a fluid state is represented by µ(B|l). If we abbreviate the fraction of
sites occupied by i particles by Θi, and take into account µ( ) = 0, the condition of equilibrium
µ( ) + iµ(B|g) = µ( i B ) for the adsorption process is

RT lnΘ0 + i · [µ0(B|g) + RT ln(c/c0)] = µ0( B ) + (i− 1) · µ(B|l) + RT ln Θi .
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Figure 3: Brunauer-Emmet-Teller ad-

sorption isotherms. The degree of coverage

Θ is represented as a function of the reduced

pressure p/ps for various values of the ratio of

50%-pressure p1 and saturation pressure ps.

The smaller the 50%-pressure the firmer the

binding to the surface. p1 < ps corresponds to

an adsorbing surface, p1 = ps to an indifferent

surface and p1 > ps to a repelling surface.

We subtract iµ0(B|g) from both sides, divide both sides by RT , raise to the power of e and multiply
by ci

0. This yields

Θ0 ci = c0 · exp

(
µ0( B )− µ0(B|g)

RT

)

︸ ︷︷ ︸
c1 50%-concentration

·
[

c0 · exp
(

µ(B|l)− µ0(B|g)
RT

)

︸ ︷︷ ︸
cs saturation concentration

]i−1

·Θi .

c1 is the half-value concentration of single-layer adsorption, as a comparison to the corresponding
formula in the last section shows. The saturation concentration is cs where liquid B|l and vapor
B|g are in equilibrium,

µ(B|l) = µ(B|g) or µ(B|l) = µ0(B|g) + RT ln(cs/c0) .

Solving for cs yields the expression used above. If one divides the equation for Θ0c
i by ci

s and uses
the abbreviations c/cs = q and c1/cS = a, one obtains

Θ0 qi = a Θi for i > 0 .

Multiplying the equation on the one hand by the factor 1, and on the other by a factor i and
adding up over all i > 0, yields for q < 1 the two relations

Θ0q (1 + q + q2 + q3 + ...)︸ ︷︷ ︸
(1− q)−1

= a (Θ1 + Θ2 + Θ3 + ...)︸ ︷︷ ︸
1−Θ0

,

Θ0q (1 + 2q + 3q2 + ...)︸ ︷︷ ︸
(1− q)−2

= a (Θ1 + 2Θ2 + 3Θ3 + ...)︸ ︷︷ ︸
Θ

.

The expression in parentheses below at the left is exactly the derivative with respect to q of
the expression in parentheses above at the left. Therefore its sum is identical to the derivative
d(1 − q)−1/dq = (1 − q)−2. Dividing both sides of the first equation by aΘ0, addition of 1 and
going over to the reciprocal yields an expression for Θ0 (below left). This can be inserted into the
second equation to be solved for Θ. The result is (below right):

[
1 +

q

a(1− q)

]−1

= Θ0 , Θ =
q

[a(1− q) + q](1− q)
.

If one divides the numerator and the denominator by a, and inserts q = c/cs and a = c1/cs,
one obtains the equation for the Brunauer-Emmet-Teller adsorption isotherm in which the
concentration ratios c/c1 and c/cs can be replaced by the corresponding pressure ratios p/p1 and
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p/ps (Figure 3),

Θ =
c/c1

(1 + c/c1 − c/cs) · (1− c/cs)
. (BET adsorption equation)

Generalizing the adsorption equations

One can give the adsorption equations a more general formulation in which the substance to be
adsorbed, B, can appear in any form (not only as a dilute gas or dilute solution) if one does not
revert to the mass action formula for B when deriving the result. We can easily go back on this
step and replace the concentrations with potentials again by use of an approach of the type µ =
µ1 + RT ln(c/c1) or c1/c = exp[(µ1−µ)/RT ]. This is interesting for the Langmuir equation Θ =
(c1/c+1)−1 and, correspondingly, the BET equation for c1 = cs, Θ = (c1/c−1)−1, which describes
the ”condensation” of the gas B on an ”indifferent” surface (neither adsorbing nor repelling and
comparable to fluid B in binding behavior). We obtain two important functions, represented in
Figure 4. We have already encountered one of these in protonation of a base, and we will encounter
them again later:

Θ =
1

exp
(

µ1−µ
RT

)
+ 1

Langmuir adsorption

(Fermi-Dirac distribution),

Θ =
1

exp
(

µ1−µ
RT

)− 1

Condensation on indifferent surface

(Bose-Einstein distribution).

condensation at an
indifferent surface

L
adsorption

ANGMUIR

2 RT

Q

m
m1

Figure 4: Degree of coverage Θ as a function

of the chemical potential µ of the substances

to be adsorbed, for two theoretically interesting

special cases. R gas constant, T temperature,

µ1 ”50%-potential” (for which half-occupation

of the first adsorption layer is reached).

Contribution of translation to the chemical potential

We wish to calculate the contribution to the chemical potential µ of the different quantum me-
chanically allowed translation states of the molecules of a dilute gas B. This gas is in a container
with a volume V . At first we will assume that all the molecules have the same internal state –
rotational state, vibrational state, electronic state, nuclear state – having energy ε, so that they
are all identical. If, for the sake of simplicity, we assume the container to be a cube with edge
length a, the additional energy of the individual translation states of the B molecules with mass
m, is given by the following equation:

εnnn =
nnn2h2

8ma2
nnn = (n1, n2, n3) and n1, n2, n3 = 1, 2, 3...
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We consider each translation state nnn as a kind of site
nnn

inside the container. This location
can be occupied by B particles. In the case of fermions, this would be one particle at the most. In
the case of bosons, the number is unlimited,

nnn
+ iB → i B

nnn

{
i = 0, 1 for fermions,
i = 0, 1, 2, 3... for bosons.

First, in a dilute gas there is no interaction between the particles worthy of mention. Second, the
number of locations available is much greater than the particle number N . The first condition
means that the locations will be occupied independently of each other, whereas the second means
that the degree of occupation2 for all the locations remains small, i.e., Θnnn ¿ 1, so that multiple
occupancy or processes with i > 1 can be ignored. Under these circumstances, fermions and bosons
behave identically. We revert to

µ(
nnn
) = µ0( nnn

)
︸ ︷︷ ︸

0

+ RT ln(1−Θnnn)︸ ︷︷ ︸
≈ 0

, µ( B
nnn
) = µ0( B

nnn
)

︸ ︷︷ ︸
(εnnn + ε)/τ

+ RT ln Θnnn .

for the chemical potential of an empty and simply occupied site. Because of Θnnn ¿ 1 in the
expression on the left, we can set the logarithmic term practically equal to zero so that µ(

nnn
)

disappears. On the right, we can express the main term by (εnnn + ε)/τ . The substance B is
exchanged inside the container between the different locations and between the container and the
environment, if the container walls are permeable, until all the processes

nnn
+ B → B

nnn
are in

equilibrium. This means until µ(
nnn
) + µ = µ( B

nnn
) or, based upon the expressions above, until

µ = (εnnn + ε)/τ + RT lnΘnnn for all nnn

To calculate N , we solve for Θnnn and add up over all nnn:

Θnnn = exp
(

µ− ε/τ

RT

)
· e−εnnn/kT , N =

∑
nnn

Θnnn = exp
(

µ− ε/τ

RT

)
·
∑
nnn

e−εnnn/kT ,

The sum at the right is in agreement with the translational partition function zt of quantum
statistics, which we can calculate in the usual way. One cannot call this part of the calculation
as elementary, but it is also not too difficult for us to carry it out. Using the abbreviation q =
h/(2a

√
2mkT ), one obtains:

∑
nnn

e−εnnn/kT =
∞∑

n1,n2,n3=1

e−q2(n2
1+n2

2+n2
3) =

[ ∞∑
n1=1

e−q2n2
1

]3

≈
[ ∫ ∞

0

e−q2n2
1dn1

︸ ︷︷ ︸√
π/2q

]3

=
(2πmkT )3/2

h3
V .

The step from the sum to the integral can be carried out if q ¿ 1, so that the function value
f(n1) = e−q2n2

1 changes only slightly with growing integer n1. This condition is satisfied for usual
temperatures and macroscopic dimensions of a. If the ”quantum length”3 λ = h/

√
2πmkT or the

2Instead of the term degree of coverage, which is based upon surfaces we use the more general term degree of

occupation here. We reserve the name occupation number for the particle number in specific quantum states. The

occupation number is therefore an integer, the degree of occupation ( = average occupation number) is a real number.

3
√

2πmkT describes the momentum uncertainty based upon the thermal motion of the particles, and the quantum

length λ = h/
√

2πmkT describes the corresponding position uncertainty. The position of the center of mass of a thermally

moving gas particle is only determined up to a speck of the length, height and width λ. At room temperature, λ is 100

pm for hydrogen atoms (gas kinetic diameter 250 pm) and 4300 pm for electrons.

8



”degeneracy concentration”4 ce = τ/λ3 are introduced as abbreviations, the result simplifies to∑
e−εn/kT = V/λ3 = V ce/τ . Insertion into the equation for N , solving for µ, and taking into

account Nτ/V = c, results in the desired contribution of translation:

µ =
ε

τ
+ RT ln

c

ce
with ce =

τ

λ3
, λ =

h√
2πmkT

.

In order to put the equation into the usual form µ = µ0 + RT ln(c/c0), one needs only to insert
ce = (c/c0)/(ce/c0) and to transform the equation accordingly. Because in gases one prefers the
variable to be the pressure p instead of the concentration c, we will continue our considerations in
this direction.

Properties of dilute gases

In order to convince ourselves that the substance B distributed upon the sites
nnn

in the container
really behaves like a gas, we apply the relation (∂µ/∂V )T,n = −(∂p/∂n)V,T known from thermo-
dynamics to the equation for µ which we obtained in the last section. In doing so we observe that
c = n/V and that ce is independent of V :

(
∂p

∂n

)

V,T

= −
(

∂µ

∂V

)

T,n

= 0 +
R T

V
.

Integration over n at fixed V and T yields, as expected, the gas law p = nRT/V = cRT . Therefore,
we can replace c in the equation µ = ε

τ + R T ln c
ce

by p, c/ce = p/pe with pe = ce R T = k T/λ3

as ”degeneracy pressure” µ = ε
τ − R T ln pe

p0
+ R T ln p

p0
. By inserting pe and λ, we obtain

µ =
ε

τ︸︷︷︸
µinn

− R T ln
(

(2 π m)3/2(k T )5/2

h3 p0

)

︸ ︷︷ ︸
µt,0(T )

+R T ln
p

p0
.

µt,0(T ) is the reference value of the contribution of translation, meaning the value at the reference
pressure p0. The contribution of the internal state of the molecule is represented by µinn. Here
it is composed only of the term ε/τ because we have only assumed a single state. In the case of
multiple internal states with energies εi,

µinn = R T ln
∑

i

e−εi/k T ,

appears instead as one can immediately derive if one again combines all the particles in the same
state into a substance B(i) and considers all of these substances as an equilibrium mixture. The
expressions derived earlier for the contributions of vibration and rotation, µs(T ) and µr(T ), are
special cases of this equation.

As an acknowledgement of conventions, we finally calculate entropy and heat capacity for a
monatomic gas B without internal degrees of freedom, for which we have µinn = ε/τ . Taking the

4A gas must have a concentration of c ¿ ce = τ/λ3 in order to behave normally. It degenerates when c is of the

order of or larger than ce, i.e., if one or more particles are found in a volume of the order of λ3. For electrons at room

temperature, ce = 21 mol m−3. The concentration of conduction electrons in a metal is far above this value (≈ 105 mol

m−3).
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first derivative with respect to T at constant p yields the molar entropy Sm = −(∂µ/∂T )p,n, up
to the factor −1. Taking the second derivative, we obtain, up to the factor −T , the molar heat
capacity at constant pressure Cp,m = −T (∂2µ/∂T 2)p,n:

Sm = R

[
ln

(
(2 π m)3/2(k T )5/2

h3 p

)
+

5
2

]
(Sackur-Tetrode equation)

Cp,m =
5
2

R .

The contribution of translation to the molar heat capacity CV,m which is smaller by R, is thus
3
2 R and as a consequence the energy for a translational degree of freedom of a particle 1

2 k T , as
required by the equipartition principle.

Fermi-Dirac, Bose-Einstein and Boltzmanns distributions

We focus once again upon occupation of a single site with a particle B, although we now
omit the requirement Θ ¿ 1 for the degree of occupancy. We consider a site more generally as
a collection of quantum states which vary in occupation number, but not in their other quantum
numbers. An orbital in the electron shell of an atom or of an atomic union is an example of such a
site that can be occupied by electrons as long as one considers states with different spin quantum
numbers as belonging to different orbitals. The processes of occupation to be considered are:

+ iB → i B

{
i = 0, 1 for fermions,
i = 0, 1, 2, 3... for bosons.

For the chemical potential of an i-fold occupied position, we use the approach

µ( i B ) = µ0( i B ) + R T ln Θi with µ0( i B ) = i · ε/τ .

The fact that we have set µ0( i B ) proportional to the occupation number i, means that, as
before, we ignore interactions between particles. Here, ε comprises the energy of a possible internal
excitation of the particle as well as the energy gained by occupation of the site. Because of µ0( )
= 0, the condition for equilibrium µ( ) + i · µ = µ( i B ) takes the following form

R T lnΘ0 + i · µ = i · ε/τ + R T lnΘi or solved for Θi ,

Θ0

[
exp

(
µ τ − ε

k T

)

︸ ︷︷ ︸
q

]i

= Θi for all i.

Here, q serves as an abbreviation. Multiplication of the equation by 1, on the one hand, and by i

on the other, and summing over all i, yields the two relations on the left for fermions. In the case
of bosons for q < 1, it yields the two relations on the right.

Θ0(1 + q) = Θ0 + Θ1︸ ︷︷ ︸
1

, Θ0 (1 + q + q2 + q3...)︸ ︷︷ ︸
(1− q)−1

= Θ0 + Θ1 + Θ2...︸ ︷︷ ︸
1

Θ0q = Θ1 = Θ Θ0 q (1 + 2 q + 3 q2...)︸ ︷︷ ︸
(1− q)−2

= Θ1 + 2 Θ2 + 3 Θ3...︸ ︷︷ ︸
Θ

The expression 1 + 2 q + 3 q2... is the derivative of 1 + q + q2 + q3.... Hence, its sum is equal to the
derivative d(1− q)−1/dq = (1− q)−2. If we calculate Θ0 from the equations of the first line, and
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Figure 5: Fermi-Dirac and Bose-Einstein distribution

a) Degree of occupation Θ of a site with fermions or bosons as a function of the chemical potential µ; T temperature,

ε particle energy on the occupied site; dotted: Extrapolation of the common initial part, which conforms with a Boltzmann

distribution. Compare here to Figure 4!

b) Distribution of fermions on sites (thin bars) of different energy ε. Degree of occupation Θ (thick bars) as a function of

ε. Except for a transition zone in the order of k T , all the sites below the Fermi edge µ τ are fully occupied. In contrast,

the ones above are empty.

insert it into the equations in the second line, we obtain the degree of occupancy

Θ = (q−1 + 1)−1 for fermions, Θ = (q−1 − 1)−1 for bosons.

By writing out q we get the distribution functions (left, and middle):

Θ =
1

exp
(

ε−µ τ
k T

)
+ 1

Fermi-Dirac

Θ =
1

exp
(

ε−µ τ
k T

)− 1

Bose-Einstein

Θ = exp
(

ε− µ τ

k T

)

Boltzmann

The two functions are illustrated in Figure 5. If the chemical potential decreases below ε/τ ,
and with it the degrees of occupancy Θ become small, the functions have the same form. The 1
in the denominator can then be ignored and one obtains the distribution function valid for small
Θ, given above on the right. Numerous sites with the same energy ε are often combined into one
energy level. In this case, the average particle number N̄ can be calculated for this purpose by use
of the Boltzmann-distribution function, even for N̄ > 1, as long as the degrees of occupancy Θ
remain small for a single site.

Review

We have seen that the task we set ourselves, namely to expand the phenomenological description of
macrosystems over to microsystems, could be accomplished without much difficulty. The objections
that seemed so convincing at the beginning became invalid. In retrospect we are tempted to dismiss
them as unfounded prejudices. However, they should not be considered wrong, as they were correct
according to the level of knowledge at that time. Now – in light of new knowledge – we must review
them and adjust our thinking accordingly.

The first argument that differences in the patterns of description in a well thought out field
lets us expect that such deviations don’t happen arbitrarily, is in itself beyond doubt. Only the
assumption that despite their long histories, thermodynamics and chemical dynamics are ”well
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thought out” doesn’t seem to apply. On the contrary, our findings lead us to expect that not all
the faults in the conceptual structure have been found, by far.

The second argument pertained to the circumstance that macrosystems can have characteristics
which corresponding microsystems do not have, which therefore makes equal treatment impossible.
One can associate with an isolated multi-particle gas a temperature T or a chemical potential µ,
but not with a closed system of one, two or three gas particles. There is no such limitation in micro-
systems that are in thermal or chemical equilibrium with their macroscopic environment because
T and µ are determined from outside. It is enough here to forgo isolation from the environment,
which is uninteresting anyway, in order to achieve the desired equal treatment.

The third argument was that the Pauli exclusion principle introduces a totally new aspect
to the considerations. This is a specious argument. In fact, a proton bound to a base excludes
binding of a second proton in the same place in the same way that an electron in an orbital holds
off a second electron. We make the Pauli principle responsible for the first case and spatial size
of atoms for the second one. However, the required space for electrons in the atomic electron shell
and the sizes of the atoms and molecules involved are governed by the exclusion principle. This
aspect is not new and has been long included without being expressly mentioned.

Similar reasons can be applied to the fourth argument, which states that the indistinguisha-
bility of identical particles only comes to bear in quantum statistics and not in common chemical
processes. Already in the cases of the simplest chemical equilibria, contradictions can be construed
if we disregard indistinguishability. For example, if we consider a dissolved substance B with
concentration c and chemical potential µ = µ0 + R T ln(c/c0), to be divided into two identical
components made up of B particles with the concentrations c/2, then we must assign the chemical
potential µ0 + R T ln((c/2)/c0) < µ to the components. If B were in equilibrium with a substance
A, then this would not hold for the components in question so that A would have to decay into
these and therewith into B. Thinking of a substance as decomposed into components is a mental
tool we have often used. It assumes that the components are different from each other in some
characteristic. Only artificial violation of this assumption lead to conflicts. Therefore, the indis-
tinguishability of identical particles appears as a special difficulty for us but is rather the specific
problem of an approach in which configurations of individual particles are made the starting point
of statistical considerations.

Outlook

Up to this point, our means have never failed us in our derivations. On the contrary, we have
achieved certain key equations that make a large part of the areas of application of molecular
statistics accessible. Since statistical justifications are referred to in many fields of physics and
chemistry, a wide field of application opens up here.

However, in order to use the mass action formula, we have always excluded interaction forces
between particles of a dissolved, adsorbed or gaseous substance. We have always presupposed
”ideal” circumstances. What is to be done when this condition is no longer fulfilled? At first
thought, it is hard to imagine how this limitation can be overcome. Again we have the impression
of having come to a barrier which is too high for our simple means. On the other hand, we have
just observed how misleading such hasty judgements can be and one should not be kept from
making an attempt. Indeed, it appears that with some skill, this hurdle can also be overcome. In
another paper we wish to investigate the possibilities of including intermolecular interactions, such
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as Coulomb’s forces between dissolved ions, the required space of gas molecules or the mutual
influence of adsorbed particles.
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Georg Job
An elementary approach to quantum statistical problems (III)

Summary: The solution procedures discussed in Parts I and II essentially make use only of the existence of

chemical potential, its concentration and energy dependency. However, if cleverly applied, they can also be used

in the case of interaction between the dissolved, vaporized or adsorbed particles. For dissolved substances, this

will be demonstrated with the help of the Debye-Hückel theory of inter-ionic interaction. The van der Waal’s

equation will serve as the example for gases. For adsorbed substances, we will show the procedure in general.

Introduction

In all of our computational examples, we have mostly used two characteristics of the chemical
potential: the concentration dependency and the energy dependency expressed by two equations
which we have given names for the sake of convenience. These are the ”mass action formula”
µ(c) = µ0 + RT ln(c/c0) and the ”excitation formula” µ(ε) = µ(0) + ε/τ . The validity of the
first equation necessitates the absence of noticeable interaction between the particles distributed
in space. This only applies to ideal gases or ideal solutions, a state that can be approached by
sufficiently high dilution. Denser gases and more concentrated solutions are therefore excluded
from this treatment.

We know from previous experience how careful one must be with such conclusions. A spon-
taneous idea can be enough to enable us to jump a hurdle that seemed insurmountable before
(Figure 1). Stimulus for solving our problems can be gotten from totally different areas. In order
to calculate the deviation from ideal behavior of solved electrolytes, Debye and Hückel get by
with Boltzmann’s Principle and Poisson’s equation. All we need to do is to take the equivalent
steps for chemical potentials to achieve the same objective. An advantage for us here is that we
do not have to change from one level to another, i.e., from the statistical to the phenomenological.
Rather, we begin immediately with the quantity we are interested in at the end. To keep the math
uncomplicated, it is a good idea to study the formation of the ion clouds on flat boundary layers
– e.g. in analogy to the barometric equation – before going over to spherically symmetric clouds
around the ions.

The insight gained here can, in turn, be used to describe the behavior of real gases. We
choose a van der Waal’s gas as our example because the equation of state and the associated
physical model are familiar to every physicist and chemist, and therefore immediately comparable

Figure 1: An unconventional solution to a well-known problem



to our assumptions and results. Of course, if one knows how, one can avoid borrowing from
electrochemistry and go directly from ideal to real gases.

After having lost our shyness towards micro-systems in Part II, we are able to use these as
models for appropriate solution procedures. A base capable of taking several protons, Bs + i H →
[BsHi], can serve as a model for a surface having sites for adsorption where strong interactions exist
between the adsorbing particles. Nothing hinders us from considering Bs as a very large molecule
with correspondingly numerous adsorption sites. If we imagine these spaces distributed inside a
homogenous molecule instead of on its surface, we then have a model of a solution with strong
interaction between the dissolved particles. We will let this approach play out in an example of
surface chemistry. Transferring it to solutions shouldn’t present any real difficulties.

Double layers on electrode surfaces

At a charged surface with no charge current in an electrolyte solution, the solution forms a boundary
layer in which the potential ϕ(r) and the concentrations ci(r) of the various types of ions deviate
from the values ϕ(∞) and ci(∞) dominating far away in the interior of the solution. The distance
from the aforementioned flat surface is indicated by r (Figure 2).
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Figure 2: a) Ionic concentration c and electric potential ϕ in the surface layer of an electrode charged positively relative

to the solution. r is the distance from the electrode (r = 0 for the centers of the ions when they touch the electrode), z

is the charge number, F is the Faraday constant, R is the gas constant, T is the temperature, l is the shielding length.

For small voltages between the electrode and the interior of the solution, ϕ(0) − ϕ(∞) ¿ RT/F ≈ 25 mV, the c and

ϕ values exponentially approach the values for large r (∼ exp(−r/l)).

b) The field arising in the positive charge of the electrode surface ebbs in the excess negative charge of the boundary

layer so that the interior of the solution becomes field-free. The shading on the right symbolizes the charge density.

The boundary layer shields the solution electrically from the charged electrode surface: the
field arising there ebbs in the boundary layer. The greater the concentartion of ions of the so-
lution, the more effective the shielding will be and the thinner the boundary layer will be. The
ional concentration1 cι offers a natural measure of how ”ional” the solution is. Among the three
expressions

1In order to mark the quantities relating to (inter-)ionic interactions, we choose the index ι (lower case iota) which

should be carefully distinguished from index i. For historical reasons, instead of cι, most authors prefer the molar ionic

strength Ic = 1
2
cι which is half as large. In doing so, a factor of 2 is dragged into the formula. For practical reasons

(because of independence of pressure and temperature) the ional molality bι =
∑

i z2
i bi and respectively, the appropriate

molal ionic strength Ib = 1
2
bι, is preferred.
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∑

i

z0
i ci

︸ ︷︷ ︸
c

,
∑

i

z1
i ci

︸ ︷︷ ︸
ρ/F

,
∑

i

z2
i ci

︸ ︷︷ ︸
cι

, ...

the first one expresses the total concentration of all components. The second one describes the
charge density ρ apart from the factor F−1. The third describes the ”ion-ness” of the solution.

In the following, only the simplest case of a double layer consisting of a charged electrode surface
and an oppositely charged diffuse boundary layer will be considered. We assume that all the ions
have unchanging solvation sheaths of the same diameter and are not adsorbed at the electrode
surface. To account for the potential energy in the electric field of an ion with a charge number
of zi, one must, as discussed before, add the term ziFϕ(r) to the appropriate chemical potential.
Then, based upon the mass action formula, we have:

µi(r) = µi(∞) + zi F ϕ(r) + R T ln
ci(r)
ci(∞)

if we choose ϕ(∞) = 0. As long as there are spatial differences in the potentials µi(r), the ions
will migrate and thereby change their concentrations ci(r). In a state of equilibrium, each of these
potentials has the same value µi everywhere. In this case, the two terms µi(r) and µi(∞) cancel
each other so that, by solving the equation for ci(r), we obtain the expression

ci(r) = ci(∞) · exp
(−zi F ϕ(r)

R T

)
≈ ci(∞) · exp

[
1− zi F ϕ(r)

R T

]
for ϕ(r) ¿ R T

zi F
.

The expression on the right results from the series expansion of the exponential function, if the
series is broken off after the linear term. This simplification of the calculation means that we must
limit ourselves to small voltages between the electrode and the solution, i.e., to ϕ(0) − ϕ(∞) ¿
RT/F .

In the boundary layer, even in equilibrium, the charges of the ions do not cancel, but cause a
space charge of the density ρ(r) = F

∑
zici(r). According to Poisson’s equation, this, in turn,

causes the curved shape of the electric potential. With the ci(r) values calculated above, we find:

− ∈ ∂2ϕ(r)
∂r2

= ρ(r)
︸ ︷︷ ︸
Poisson’s equation

=
∑

i

zi F ci(∞)

︸ ︷︷ ︸
ρ(∞) = 0

−
∑

i

z2
i ci(∞) · F 2

R T
︸ ︷︷ ︸

cι

· ϕ(r) .

(∈ = ∈r · ∈0 permittivity, ∈r relativ permittivity, ∈0 permittivity of vacuum, cι = cι(∞)).
ρ(∞) vanishes because the solution’s interior is electrically neutral. Using the abbreviations ϕ′′ =
∂2ϕ(r)/∂r2 and l−2 = cιF

2/∈RT , the equation above becomes:

ϕ′′ = l−2 · ϕ .

By taking the second derivative, one is easily convinced that the equation can be solved using ϕ =
a e±r/l, i.e., by ϕ′′ = l−2 a e±r/l, where a = ϕ(0). In our case, only the negative sign is useful in
the exponent because e+r/l diverges for r → ∞. With the expressions for ci(r) found above, with
ϕ(r) inserted, we arrive at the result represented in Figure 2:

ϕ(r) = ϕ(0) · e−r/l

ci(r) = ci(∞) ·
[
1− zi F ϕ0

R T
· e−r/l

]




for ϕ(0) ¿ R T/F

with l =
√
∈ R T/(cι F 2) .
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d

l

Figure 3: A diffuse boundary layer or ”ion cloud” forms

around an ion even in a dilute electrolyte solution. It is con-

fined inside by a sphere with a radius of d (d is the ionic di-

ameter) and its thickness is expressed by the shielding length

l. The deviation of the electric potential and the ionic con-

centrations from their average values in the interior of the

solution fall as ∼ exp(−r/l)/r with the distance r from the

center of the central ion. The shading in the ion cloud shows

the charge density in the plane of the figure. Only starting

at an ional concentration of 1 kmol m−3 will l ≈ d formally,

as seen in the figure, while l is many times greater in dilute

solutions.

We see that the deviations of the potential ∆ϕ = ϕ(r) − ϕ(∞) and of the ionic concentrations
∆ci = ci(r) − ci(∞) from the values inside the solution subside exponentially in the boundary
layer with the distance from the electrode surface. Here, the Debye length or, shielding length l,
represents a measure of the thickness of the boundary layer shielding the field.

Theory of interionic interaction

Debye and Hückel assumed that around every ion in a dilute electrolyte solution a spherically
symmetric boundary layer forms that shields the charge of the central ion. The ion concentrations
ci(r) and the electric potential ϕ(r) can be calculated as functions of the distance r from the center
of the central ion the same way as in the last section if analogous prerequisites are assumed. At this
point we will pass over the calculation that does not add anything essentially new (except for some
special mathematical features as a result of spherical symmetry). We will instead investigate, in a
somewhat simplified manner, the most important result of shielding for the chemical behaviour.

Without this shielding effect, the central ion, whose charge number and diameter are z and
d, respectively, would be surrounded by a long-range electric field. By forming a boundary layer
with the thickness l, calculated according to the equation mentioned in the last section, the field
effectively disappears beyond a distance of r = d + l, and its energy content ε along with it
(Figure 3). With the help of the formula for the capacity of a sphere with radius r, C = 4 π ∈ r,
and the equation for the energy of a capacitor with charge Q, E = 1

2 Q2/C, the result is ε =
1
2 z2 e2/{4 π ∈ (d + l)}. According to the excitation formula, this loss of energy manifests itself in
a reduction of the chemical potential µ of the corresponding type of ion by ε/τ :

µ = µ0 + R T ln
c

c0
− z2 e F

8 π ∈ (d + l)︸ ︷︷ ︸
µι

(Debye-Hückel-equation)

µι is the ionic excess potential which vanishes for uncharged, nonionic substances. If we take
the equation for shielding length l = l0 ·

√
c0/cι from the last section, with l0 = F−1

√
∈ R T/c0,

and at the same time keep to such a small ional concentration that d can be neglected compared
to l (this is satisfied more or less for cι < 10 mol m−3 in watery solutions of the typical ions, that

4



1-2-Electrolyte

1-3-Electrolyte

2-2-Electrolyte

1-4-Electrolyte

1-1-Electrolyte

0 0.1 0.2 0.3 0.4 0.5 0.6

0

-0.2

-0.4

-0.6

-0.8

z2

mi

c
0

ci

3457

4

43

8

33

4
8

33

45

4

42

8

31

24

lim
iting tangent

kJ

mol

Figure 4: Ionic excess potential µι of dissolved electrolytes. The µι-value of an electrolyte AaBbCc... that is dissociated

into the ions AzA , BzB , CzC ..., is composed additively from the contributions of the individual ions. Therefore we have

µι = (az2
A + bz2

B + cz2
C...)︸ ︷︷ ︸

z2

·µι0

√
cι

c0

according to the Debye-Hückel limiting law for small ional concentrations cι. As a result, µι/z2 should yield initially

coinciding curves with the initial slope µι0 for all electrolytes. The quantity is plotted as a function of
√

cι/c0. Experi-

mental values, averaged for different electrolytes of the same type, are displayed. Error bars denote the standard deviation.

The numbers show the number of electrolytes summarized in one bar. The reference value of the concentration is c0 =

1 kmol m−3. The limiting tangent and the solid curve have been calculated according to the Debye-Hückel equation.

For the solid curve, we chose d = l0.

means d ≈ 0.4 nm including hydration sheaths and l > 4 nm), we have2 (Figure 4):

µι =
−e F

8 π ∈ l0︸ ︷︷ ︸
µι0

·z2 ·
√

cι

c0
for d ¿ l . (Debye-Hückel limiting law)

Van der Waal’s gas

In order to explain the behavior of dense gases and their condensation, van der Waal’s gas model
is generally used because the physical assumptions can be made evident and the resulting equation
of state (p+an2/V 2) · (V −nb) = nRT is fairly simple, physically clear and more or less applicable
even to the condensate. On the other hand, calculating the constants a and b from the molecule

2For water at 298 K and 1 kmol m−3 as reference concentration c0, we have µι0 = −2.062 kJ mol−1. If one replaces

µι by the appropriate activity coefficient fι, and the ional concentration by the ionic strength Ic = cι/2, one obtains the

well-known equation lg fι = µι/RT ln 10 = −const. z2
√

Ic with const. = 0.51 mol−1/2 dm3/2 for water at 298 K. At

this point one should be aware that although this transformation brings us closer to the usual formulations, the general

relationships again start to become more complicated.
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Figure 5: Interaction energy w of rigid, spherical gas particles with a diameter d influenced by dispersion forces. The

position of a particle is denoted by the location of its center. The energy is ilustrated

a) for a particle pair as a function of their distance r. The figure shows the case of the smallest distance, r = d, in which

the energy reaches its minimum −w0.

b) for a particle under the influence of all of its neighbors considered as uniformly distributed. The contribution of all

of the neighbors in a spherical shell with a radius r > d, thickness dr and volume dV , is the same. The particel in

consideration excludes all others from the gray zone (radius d).

properties is more difficult and is often omitted. Entropy and the chemically important chemical
potential µ are almost always ignored.

Contrary to the usual approach, we will start with µ and calculate the quantity directly from
van der Waal’s assumption about molecular interaction without referring to the equation of
state. As usual, we imagine the N gas particles as rigid, non-rotating and attracting spheres
having a diameter d, distributed in a container of volume V . A slight amount of particle exchange
with the environment is expressly allowed, for example as a result of weak diffusion through the
walls. If we presume that the attraction is based upon dispersion forces, we can use the London’s
formula

w(r) = −w0 ·
(

d

r

)6

for the energy of interaction w(r) between two particles as a function of their distance r (Figure
5). To calculate the average energy w̄ of an individual particle as a result of interaction with all its
neighbors, we imagine the gas particles to be distributed uniformly throughout the volume, leading
to a uniform density N/V . The number dN of neighboring particles, which are in a spherical shell
of thickness dr at a distance r from the center of the particle in question, is then given by dN =
N
V · 4 π r2 dr. Its contribution to w̄ is given by −w0 ·

(
d
r

)6
dN . Integration over the entire volume

where neighboring particles can be found, i.e., from the smallest possible distance r = d to the
container walls, which, in molecular dimensions is just about r = ∞, leads to the result:

w̄ =
∫ ∞

d

−w0 ·
(

d

r

)6

· N

V
4πr2dr = −4πw0d

6 N

V

[−1
3

r−3

]∞

d

=
−4 π

3
d3w0

N

V
.

Related to the amount of substance, which is just τ for a particle, w̄ yields the average molar
interaction energy

w̄

τ
=
−2 a n

V
where a =

2 π d3 w0

3 τ2
.

A particle occupies a spherical zone with a volume of 4 π
3 d3, from which it excludes other

particles, more precisely, the centers of other particles. Accordingly, N particles possess N such
zones with a total volume of N 4π

3 d3, in which no other particle can exist as long as the particle
density is so small that the zones do not overlap noticeably. Hence, the volume V appears to be
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reduced for each extra particle intruding from outside. In other words, the gas concentration is
correspondingly raised,

c∗ =
N τ

V −N 4π
3 d3

=
n

V − 2 n b
where b =

2 π d3

3 τ
.

The assumption that the particles may not be too densely packed here means that V À nb. c∗

stands for the concentration relevant for particle interaction with the environment and therefore
for the chemical potential. It must be inserted into the mass action formula. At the same time, if
we take into account the interaction energy calculated above according to the excitation formula,
we obtain

µ = µ0 − 2 a n

V
+ RT ln

n

(V − 2 n b)c0
for V À n b .

If one sets both a and b equal to zero, then the equation is transformed into the one for ideal
gases, µ = µ0 +RT ln(c/c0), where µ0 is the reference value of the potential for the corresponding
ideal gas. We can calculate it according to the formulas derived in Parts I and II. Because there is
no internal excitation for rigid, non-rotating spherical molecules (mass m), only the translational
contribution µ0 = ε/τ +RT ln(c0/ce) is to be considered along with a possible ”basic contribution”
ε/τ . Therefore we have ce = τ/λ3, where ce is the degeneracy concentration, and λ = h/

√
2 π m k T

denotes the quantum length.
At the moment we are concerned with another question, though. What is the pressure as a

result of the approach used above for the chemical potential? We can calculate it as we did for the
dilute gases in Part II, with the help of the relation (∂µ/∂V )T,n = −(∂p/∂n)V,T . Applied to the
equation above, we obtain,

(
∂p

∂n

)

V,T

= −
(

∂µ

∂V

)

T,n

= −2 a n

V 2
+

R T

V − 2 n b
≈ −2 a n

V 2
+

R T

V
·
(

1 +
2 n b

V

)

since µ0 is independent of V . The approximation 1
1−x ≈ 1 + x for x ¿ 1 was used in the last step

of the calculation. If we use the same approximation 1 + x ≈ 1
1−x , integration over n at fixed V

and T results in

p =
−a n2

V 2
+

n R T

V
·
(

1 +
n b

V

)
≈ −a n2

V 2
+

n R T

V − n b
.

Now we have van der Waal’s equation3, which we only need to rewrite into the usual form:

(
p +

a n2

V 2

)
(V − n b) = n R T and a =

2 π d3 w0

3 τ2
, b =

2 π d3

3 τ

3Only in the case of V À nb does the derived expression for the chemical potential yield exactly van der Waal’s

equation. One can slightly rewrite it, staying within the limits of validity, so that the relation is strict. In order to replace

V − 2 n b in the logarithmic term by the factor V − n b necessary for the van der Waals equation, we expand the

fraction there with V − n b = V (1 − x) where x = n b/V ¿ 1 and split off the term ln[(V − n b)/(V − 2 n b)] =

− ln[(1− x− x)/(1− x)] = − ln[1− x/(1− x)] ≈ x/(1− x) = n b/(V − n b):

µ = µ0 − 2 a n

V
+ R T ln

n

(V − 2 n b)c0
= µ0 − 2 a n

V
+ R T

[
ln

n

(V − n b)c0
+ ln

V − n b

V − 2 n b

]

≈ µ0 − 2 a n

V
+ R T

[
ln

n

(V − n b)c0
+

n b

V − n b

]
.

In order to test our results we form −(∂µ/∂V )n,T , on the one hand, and on the other hand (∂p/∂n)V,T , by use of van

der Waal’s equation, we obtain, as it should be, the same expression: −2 a n/V 2 + [R T/(V −n b)]·[1+n b/(V −n b)].
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Adsorption with interaction

If perceptible interactions between the adsorbed particles occur, then the surface may be divided
into uniform areas as far as possible. These have to be chosen of such a size that the energy of
interaction of the molecules adsorbed at the edges with those outside can be neglected compared to
the total energy of interaction on the inside. These areas, comprising z sites, take over the former
role of the independent individual sites. In the simplest case, areas with only two adsorption sites,
z = 2, have no noticeable interaction with the environment when the sites are pair-wise close to
each other and the pairs themselves are far enough apart from each other. Starting from an empty
area, we have 2z independent adsorption processes. For z = 2 this is:

ibinary bi

→ 00 0
+ B → B 01 1
+ B → B 10 1
+ 2 B → B B 11 2

We consider the sites of an area as numbered, n = 1, 2, 3, ... z. We number the occupation states
as well, with a number i = 0, 1, 2, ... (2z − 1) whose n-th digit is a 0 in z-digit binary syntax
ibinary, if the n-th site is empty. Otherwise it is 1. The occupation number bi, meaning the number
of adsorbed B-molecules in the i-th state, is then simply the cross sum of ibinary. In equilibrium,
we have

µ0,0 + R T lnΘ0︸ ︷︷ ︸
µ(empty area)

+ bi · [µ0,B + R T ln(c/c0)]︸ ︷︷ ︸
µ(B)

= µ0,i + R T lnΘi︸ ︷︷ ︸
µ(area in the i -th state)

for all i .

We subtract bi · µ0,B from both sides, divide by RT , form the power with and multiply by cbi
0 .

Since the reference value µ0,0 of the potential for the empty area vanishes, we have

Θ0 · cbi =

[
c0 · exp

(
µ0,i − bi µ0,B

bi R T

)

︸ ︷︷ ︸
ci (50%-concentration for

the i-th occupation state)

]bi

·Θi for all i 6= 0 .

As the value for the parameter ci=0 left undetermined here, we choose the reference concentration
c0. Except for c0, the parameters ci represent a kind of 50%-concentration for the respective
adsorption process. This means the concentration c for which the fraction Θi of areas in the i-th
occupation state would become 1

2 if the process being observed was happening alone. In this case,
we would have Θ0 = 1−Θi. As above in the case of Langmuir adsorption, this allows us to solve
the equation for Θi:

Θi =
(c/ci)bi

1 + (c/ci)bi
with Θi = 1/2 for c = ci .

Dividing the 2z equations by cbi
i and multiplying on the one hand by a factor of 1 and on the other

by the factor bi, and summing over all i, yields two relations,

Θ0 ·
∑

i

(
c

ci

)bi

=
∑

i

Θi = 1 , Θ0 ·
∑

i

bi ·
(

c

ci

)bi

=
∑

i

bi Θi = z Θ ,
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Figure 6: Adsorption isotherms for independent

pairs of identical adsorption sites. The figure

shows the degree of occupation Θ as a function

of the reduced concentration c/c01 for various

ratios c11/c01. c01 is the 50%-concentration for

a singly occupied pair of sites. c11 means the

corresponding value for double occupation. c11 <

c01 represents attracting and c11 > c01 repelling in-

teractions. c11 = c01 yields the Langmuir-isotherm.

from which, after removing Θ0, we obtain the degree of occupation Θ of the whole surface as a
function of the concentration c:

Θ =
1
z

∑

i

bi ·
(

c

ci

)bi
/ ∑

i

(
c

ci

)bi

. (adsorption equation)

Applied to the simplest case of z = 2 with two identical adsorption positions, i.e. c01 = c10, for z

= 2, the equation is (Figure 6):

Θ =
c/c01 + (c/c11)2

1 + 2c/c01 + (c/c11)2
.

General systems of interacting particles

The adsorption of interacting particles discussed in the last section lends itself to easy generalization
in that instead of particles distributed over a flat surface one can consider them distributed in
space. Whether or not the space is empty or filled with a material (perhaps a solvent) makes no
fundamental difference. In place of a two-dimensional area a three dimensional one, denoted by®


©
ª, appears. We can imagine it separated from the environment by an appropriate envelope.

This region represents the system being investigated, which exchanges the substance B with its
environment : ®


©
ª+ biB −→

®


©
ªbiB i

We consider the total of all possible occupation states
®


©
ªbiB i

of the system to be consecutively
numbered (number i). In a concrete case, to keep the math to a minimum, we will attempt to
get by with the smallest possible microscopic system. For the case of general equations, smallness
basically doesn’t matter so the systems can be macroscopic as well.

Because we are no longer interested in the form in which B exists in the environment, we only
assume that the chemical potential µ of B has a defined value. The requirement for the occupation
equilibrium is then

µ0,0 + R T lnΘ0︸ ︷︷ ︸
µ(empty system)

+ bi · µ = µ0,i + R T ln Θi︸ ︷︷ ︸
µ(system in the i -th state)

⇒ Θi = Θ0 · exp
(−µ0,i τ + µ ni

k T

)

for all i 6= 0, where ni = biτ denotes the amount of B in the i-th occupation state. Note that
µ0,0 ≡ 0. While the sum of all Θi results in 1, the sum of all niΘi gives us the total amount n of
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substance B in the system:

1 =
∑

i

Θi = Θ0

∑

i

exp
(−µ0,i τ + µ ni

k T

)

︸ ︷︷ ︸
Ξ

, n =
∑

i

ni Θi = Θ0

∑

i

ni exp
(−µ0,i τ + µ ni

k T

)

︸ ︷︷ ︸
k T · (∂Ξ/∂µ)T

Θi can be understood as the probability to find the system in its i-th occupation state for given µ and
T . n is correspondingly understood, as the expectation value of amount of B in the system. While
the ni are integer multiples of τ , n can be a fractional multiple. The amount of B has some scatter
about the expectation value, whereby the standard deviation is given by σ =

√∑
i Θi(ni − n)2.

σ is only of importance in microscopic systems. If one already has calculated the sum Ξ as a
function of µ and T (and, where applicable, of other variables such as the volume V of the system,
the amount of solvent nL, pressure p, etc.), then the calculation of the second sum is unnecessary
because it results from the first by taking the derivative with respect to µ. Given that Θ0 = Ξ−1,
as we see from the first of the equations above, and ∂ ln Ξ/∂µ = Ξ−1(∂Ξ/∂µ), we can thus express
n as follows:

n = kT

(
∂ ln Ξ
∂µ

)

T,...

where Ξ =
∑

i

exp
(−µ0,i τ + µ ni

kT

)
(*)

This equation describes the occupation of the region
®


©
ªwith the substance B similarly to how

an adsorption equation describes the occupation of a surface site.

Statistical entropy

If our empty system
®


©
ªrepresents a cavity with volume V , and if we classify an internal excitation

by rotation, vibration, etc. of a B-particle in the system as a new occupation state with its
own number i, then µ0,i τ is identical with the energy4 Ei(V, ...) of the system in its i-th state,
where the energy is dependent upon the volume V , and possibly upon further parameters. In this
case, Ξ =

∑
i exp[(−Ei + µni)/(kT )] corresponds to the grand partition function known from the

quantum statistics of open systems. The function Ξ(T, µ, V, ...) is noteworthy for fully describing
the system in thermodynamic equilibrium with its environment so that knowing this function
suffices to calculate all relevant quantities (energy E, amount of substance n, pressure p ... and the
quantities derived from them concentration c, compressibility χ, heat capacity C ...). This holds
not only for their expectation values, but for their standard deviation as well.

The necessary equations can be derived with little difficulty. Let us single out the expectation
value of the energy, for example, which we can calculate from Ξ(T, µ, V, ...) because of Θi =
Θ0 · exp[(−Ei + µ ni)/(kT )] = Ξ−1e... as follows:

E =
∑

i

Ei Θi =
1
Ξ

{∑

i

Ei e... − µ
∑

i

ni e...

︸ ︷︷ ︸
k T 2 · (∂Ξ/∂T )µ,V,...

+ µ
∑

i

ni e...

︸ ︷︷ ︸
k T · (∂Ξ/∂µ)T,V,...

}
=

k T 2

(
∂ ln Ξ
∂T

)

µ,V,...

+ µ n . (**)

4It is unecessary here to distinguish between the energy εi of a particle (or a microsystem of few particles) and the

energy Ei of the entire system, because the same formulas are valid for microsystems and for macrosystems.
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In order to arrive at the entropy, we calculate the increase of entropy while filling the empty (entropy
free) system

®


©
ªwith the substance B. We imagine slowly raising the chemical potential of B in

the environment from −∞ up to the desired end value µ. In doing so, all the other independent
variables T , V , ... should be kept constant. Using dE = TdS − pdV + µdn + ..., observing dV =
0, and performing the intermediate step dS = T−1[dE − µ dn], we obtain by applying equations
(*) and (**):

dS = T−1

[
kT 2

(
∂2 ln Ξ
∂T∂µ

)

V,...

dµ + ndµ

]
= k

[
T

(
∂2 ln Ξ
∂T∂µ

)

V,...

+
(

∂ ln Ξ
∂µ

)

T,V,...

]
dµ .

Finally, as a result of the integration over µ mentioned above

S = k

[
T

(
∂ ln Ξ
∂T

)

T,V,...

+ ln Ξ

]
.

Although this is a useful result, our actual goal is a more fundamental equation which we arrive
at if we introduce Ξ =

∑
i exp[(−Ei + µ ni)/(k T )] and exp[(−Ei + µ ni)/(k T )] = ΞΘi in the left

term of the expression above:

S = k

[
T Ξ−1

∑

i

(
−−Ei + µ ni

k T 2︸ ︷︷ ︸
ln(Ξ Θi)/T

)
exp

(−Ei + µ ni

k T

)

︸ ︷︷ ︸
Ξ Θi

+ ln Ξ

]
= k

[∑

i

Θi [− lnΘi − ln Ξ] + lnΞ

]
.

Since
∑

i Θi = 1, ln Ξ cancels so that we obtain the familiar equation for statistically defined
entropy with Θi as a probability:

S = −k
∑

i

Θi lnΘi . (Boltzmann-Shannon equation)

Review and outlook

The examples have shown that interactions between particles are no obstacle to our approach.
However, it can happen that due to their numerous interaction terms, the complexity of quantum
statistical calculations can easily become so great that an equation such as the one derived in
the last sections becomes useless. It then depends upon mathematical or physical skill to find
simplifications that can yield manageable equations without being too far off the mark.

There is another point worth mentioning. In the last sections it became clear that even fluctu-
ation phenomena lie within the range of our approach. This is in direct opposition to the general
view that phenomenological thermodynamics as a kind of sumarizing theory is insensitive towards
atomic details. And that, these effecets can be understood and described correctly only in the
context of a more comprehensiv statistical theory.

It is more difficult to determine whether or not the achievable results will live up to demands
which go beyond time-savings and reduction of the work needed for learning through formal sim-
plification. We are thinking of physical plausibility, compatibility with other views (e.g., statistics)
and completeness and elegance of description, etc. One can arrive at certain answers by check-
ing examples from various fields using the aforementioned criteria. Examples of this type will be
compiled in a further paper without valuation, so that readers can form their own judgement.

For now we will omit time-dependent phenomena because they – in the general view – are foreign
to thermodynamics and quantum statistics and require new tools. We shouldn’t let ourselves be
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discouraged by this type of argument from at least making a try at a solution, though. The theory
of the transition of states gives us examples from which to start. But, this topic is beyond the
scope of this work and may be addressed in a forthcoming article.
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